
Using Symbolic Execution to Analyze
Hardware TCP/IP Stacks

Based on HLS Development
Nianhang Hu(Presenter), Witawas Srisa-an, Lisong Xu

School of Computing

 University of Nebraska-Lincoln

1* This work is supported in part by NSF CNS-2135539

• Implementing the TCP/IP

protocol on the FPGA

Hardware TCP/IP Stack (I)

2

• Improved performance.

• Increased throughput and

reduced latency.

• Reduced CPU load

Hardware TCP/IP Stack (II)

3

Current Hardware TCP/IP Stack Testing

4

• Construct test packets

• Compare results with gold.dat

Current Test Methods

• Manual Test

• Random Test

5

Challenge of Current Testing

• TCP header 60 bytes long.

• Up to 2480 possible scenarios

• Limited scope of testing.

• Low testing efficiency.

6

OUR WORK

• Propose a symbolic execution tool.

• Enhance code coverage for the hardware

TCP/IP stack.

7

Symbolic Execution -- KLEE

8

Hardware TCP Header Testing

9

A given variable X in the TCP header:

Overview Hardware TCP Test Framework

10

Challenges of Using KLEE to Test Hardware TCP

1. KLEE-unsupported data types in HLS

2. KLEE-unsupported functions in HLS

3. Parallel computing in HLS

11

Issue 1: KLEE Unsupported Data Types in HLS

Using basic data types to construct arbitrary bit-width data types

ap_uint<W*> data;

Special data type in HLS libraryBasic data types

sizeof()Data Type

8bitsunsigned char

16bitsunsigned short

32bitsunsigned int

64bitsunsigned long

* W: bit width, from 1 to 4096 12

Solution：

Principle - Construct special data type

13

• The range of data values

• Select the appropriate basic data type

• Optimize memory space

• Minimize testing time

HLS Special Data Type (I)

ap_uint <1> tcpData;

data width = 1

unsigned char tmp

void make_symbolic_case () {

ap_uint<1> tcpData;

unsigned char tmp;

make_symbolic(&tmp,sizeof(tmp), " tmp");

klee_assume(tmp >=0 && tmp <=1)

tcpData = tmp;

}

First example

Data range: [0,1]

14

HLS Special Data Type (II)

15

Second example

ap_uint <130> tcpHeader;

data width = 130

unsigned long tmp[2]

Data range: [0,2130-1]

unsigned char data

void make_symbolic_case () {

ap_uint<130> tcpHeader;

unsigned long tmp[2];

make_symbolic(&tmp,sizeof(tmp), " tmp");

make_symbolic(&data,sizeof(data), " data");

klee_assume(data >=0 && data <=3)

tcpHeader.range(63,0) = tmp[0];

tcpHeader.range(127,64) = tmp[1];

tcpHeader.range(129,128) = data;
}

• Stream Extraction Operator : >>, <<

• Exception handling function:

• try – catch

• open and fail in std::ifstream file

16

Issue 2: KLEE Unsupported Functions in HLS

Solution:
Re-implemented the methods mentioned below.

Issue 3: Parallel Computing in HLS

Modify multithread tasks to single-thread tasks

17

Solution

• Optimize testing time.

Experiment

18

Different data combinations result in varying testing
times.

The fewer symbolic variables there are, the
shorter the testing time will be.

• Modified HLS so that HLS-based hardware TCP/IP stack
can be executed using KLEE

• On-going
• Test and compare the code coverage of random testing and

symbolic execution testing
• Continue to optimize HLS to make symbolic execution more

efficient

Conclusion and Future Work

19

Q & A

20

Nianhang Hu
hunianhang2001@gmail.com
402-853-6104
linkedin.com/in/nianhanghu-9527

